SILICON SOLAR CELLS – CURRENT PRODUCTION AND FUTURE CONCEPTS

Martin Hermle

Fraunhofer Institute for Solar Energy Systems ISE

19. 05. 2017 PV Manufacturing in Europe Brussels

PV Module Production Development by Technology It is still silicon ...

Data: from 2000 to 2010: Navigant; from 2011: IHS (Mono-/Multi- proportion from cell production). Graph: PSE AG 2016

SILICON SOLAR CELLS – CURRENT PRODUCTION AND FUTURE CONCEPTS

PRESENT

- Current production of silicon solar cells
- Evolution of cell efficiency \rightarrow The pathway to highest efficiencies

FUTURE

- Overcoming the limits of silicon
- A new generation of silicon solar cells

Present Screen-printed AI-BSF Solar Cell on p-Type Silicon

Production data from Hanwha QCELLS

Fabian Fertig et al "Mass Production of p-Type Cz Silicon Solar Cells ... " 7th Silicon PV, Freiburg, Germany, April 3, 2017

Present

Screen-printed AI-BSF Solar Cell on p-Type Silicon

- Production data from Hanwha QCELLS
- Efficiency limitation due to full area Al-BSF rear side
- What is the next step?
 - Make it cheaper?
 - Make it better?

Fabian Fertig et al "Mass Production of p-Type Cz Silicon Solar Cells ... " 7th Silicon PV, Freiburg, Germany, April 3, 2017

Present **System Cost: BOS and Module Costs**

- **Different BOS for** different Countries
- Current Module price < 0.5 \$/W
- Module price only a small fraction of system cost in most countries

→ Highly efficient solar cells reduces System Cost and the LCOE

IRENA (2016), The Power to Change: Solar and Wind Cost Reduction Potential to 2025

Present From Al-BSF to PERC

- Replacement of the full area Al-BSF with a partial rear contact (PRC)
- Two additional process steps
 - Dielectric passivation
 - Local contact opening (LCO) or Laser fired contact (LFC)

Present From Al-BSF to PERC

- Q.ANTUM production data from Hanwha QCELLS
- Still 0.6 %_{abs}/year efficiency improvement
- How far can we go?

Fabian Fertig et al "Mass Production of p-Type Cz Silicon Solar Cells ... " 7th Silicon PV, Freiburg, Germany, April 3, 2017

From Present to Future Silicon Solar Cell Production: What is the Efficiency Limit?

- Assuming constant
 "learning curve" → efficiency improvement
 ~0.6 %_{abs}/year
- What limits the cell efficiency and which technologies are needed in the future ?

From Present to Future PERC – What is the Limit

- Continuous increasing is possible by
 - Improving base lifetime > 1 ms
 - Smaller fingers and smaller selective emitter regions
 - Multi-wire Module

B.Min et al , INCREMENTAL EFFICIENCY IMPROVEMENTS..., 31st EUPVSC 2015, Hamburg

From Present to Future PERC – What is the Limit

- Continuous increasing is possible by
 - Improving base lifetime > 1 ms

No material degradation, cleaner processes/environment

Smaller fingers and smaller selective emitter regions

Higher alignment accuracy, increased metallization costs (e.g. screens)

Multi-wire Module

Higher CTM losses, higher module manufacturing costs

From Present to Future PERC – What is the Limit

- Physical Limitations
 - Contact recombination and lateral current flow

→ Passivating Contacts

From Present to Future Heterojunction Solar Cells

- Lean process flow
- Highly efficient carrier selective contacts
- High V_{oc} and low T_k

- Parasitic absorption
- Metallization temperature is limited

- U. Römer, et al. IEEE Journal of Photovoltaics (2015)
- D. Yan Solar Energy Materials and Solar Cells (2015)

© Fraunhofer ISE, M.Hermle 2017

5 nm

From Present to Future **TOPCon Record Cells with Top/Rear Contacts**

Material	Area	V _{oc}	J _{sc}	FF	η
		[mV]	[mA/cm ²]	[%]	[%]
<i>n</i> -type Mono	4 cm² (da)	725	42.5	83.3	25.7*

World record efficiency of 25.7% for both side contacted solar cells

A.Richter Silicon Solar Cells with Passivating Rear Contacts 7th Silicon PV, Freiburg, Germany, April 3, 2017

confirmed by Fraunhofer ISE Callab

From Present to Future TOPCon Record Cells with Top/Rear Contacts

Material	Area	V _{oc} [mV]	J_{sc} [mA/cm²]	<i>FF</i> [%]	η [%]
<i>n</i> -type Mono	4 cm² (da)	725	42.5	83.3	25.7*
<i>n</i> -type Multi	4 cm² (ap)	673	40.8	79.7	21.9*

 World record efficiency of 21.9% for a mc silicon solar cell

Photograph of the *n*-type HP mc solar cell

J. Benick *High-efficiency multicrystalline n-type silicon solar cells* 7th Silicon PV, Freiburg, Germany, April 3, 2017

confirmed by Fraunhofer ISE Callab

From Present to Future TOPCon Record Cells with Top/Rear Contacts

Material	Area	V _{oc}	J _{sc}	FF	η
		[mV]	[mA/cm ²]	[%]	[%]
<i>n</i> -type Mono	4 cm² (da)	725	42.5	83.3	25.7*
<i>n</i> -type Multi	4 cm² (ap)	673	40.8	79.7	21.9*
<i>n</i> -type Mono	100 cm² (ap)	713	41.4	83.1	24.5*

 Process scalable on lager area

F.Feldmann, **Evaluation of TOPCon technology on large** area solar cells EUPVSEC, Amsterdam, 2017

confirmed by Fraunhofer ISE Callab

From Present to Future Passivating Contacts – What is the limit

- Physical Limitations
 - Intrinsic Auger recombination, parasitic absorption and transport losses
 - → Back Junction Back Contact

From Present to Future Back Junction Back Contact with Passivating Contacts

- → Kaneka (Heterojunction) 26.6 % (180 cm², da)*
- Sunpower (Passivating contacts) 25.2 % (153 cm²,ta)

* NATURE ENERGY 2, 17032 (2017) | DOI: 10.1038/nenergy.2017.32

From Present to Future Back Junction Back Contact with Passivating Contacts

- Physical Limitations
 - Intrinsic Auger recombination, imperfect light trapping and transport losses
 - \rightarrow And now ?

Future What is the Limit of Silicon Solar Cells

- Shockley, Queisser (1961) Limit for Si 33% (AM1.5)
- Limitations by thermalization and transmission
- Auger Limit 29.4 %¹

¹Richter, Hermle, Glunz, IEEE J. Photovolt. (2013)

© Fraunhofer ISE, M.Hermle 2017

Future What is the Limit of Silicon Solar Cells

- Shockley, Queisser (1961)
 Limit for Si 33% (AM1.5)
- Limitations by thermalization and transmission
- Auger Limit 29.4 %¹

→ End of Silicon Solar Cell Technologies?

¹Richter, Hermle, Glunz, IEEE J. Photovolt. (2013)

© Fraunhofer ISE, M.Hermle 2017

Future

Beyond the Single Junction-Limit

- Light management
 - **Up-conversion**
 - **Down-conversion**
- Tandem cells with silicon as bottom cell
 - Perovskite top cell
 - III/V top cell

Future Perovskite / Silicon Tandem

- Perovskite has a wide, tunable bandgap appropriate for a top cell
- Solution processability allows potentially cheap processes
- 23.6 $\%^1$ achieved so far for monolithic 2 terminal devices

¹K. Bush et al. Nature Energy **2**, Article number: 17009 (2017)doi:10.1038/nenergy.2017.9

24

500 nm

Future III/V / Silicon Tandem

- III/V solar cells have already shown excellent efficiencies
- Deposition by direct epitaxial growth or wafer bonding

Beyond the Limit 2-terminal GaInP/AlGaAs//Si >30% @1-Sun AM1.5g

- Efficient utilization of spectrum
- Efficiency = 31.3%
- Near term potential above 35 %

R.Cariou et al **Monolithic III-V//Si Tandem Solar Cells with Efficiency > 30% Enabled by Wafer-Bonding** 7th Silicon PV, Freiburg, Germany, April 3, 2017

Beyond the Limit Silicon Based Tandem Cells

→ Silicon Solar Cell Technology has still a bright future

→ R&D is very important to stay on the efficiency "learning curve"

Silicon is it the working horse of Photovoltaic

- Silicon is it the working horse of Photovoltaic
- Conversion efficiency is the key to further bring down the levelized costs of electricity and to survive competition.

- Silicon is it the working horse of Photovoltaic
- Conversion efficiency is the key to further bring down the levelized costs of electricity and to survive competition.
- New cell structures with high industrial potential are available

- Silicon is it the working horse of Photovoltaic
- Conversion efficiency is the key to further bring down the levelized costs of electricity and to survive competition.
- New cell structures with high industrial potential are available
- New fascinating concepts for an old technology: Crystalline silicon solar cells 2.0

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

martin.hermle@ise.fraunhofer.de

