

Accelerating the energy transition ... since 1999

Outline

- PV plant performance in operation
- Catastrophic failure: inverter reliability in the field
- Non-catastrophic failure: hidden and creeping faults
- Beyond monitoring: data analytics in O&M
- Examples

Experience from the field

The photos are anecdotal and show some examples of what can happen in the field

4 | 3E Document confidentiality classification: general public

PV Plant Performance in Operation: Quality in Operation Matters

Statistics of 644 plants monitored by 3E

Catastrophic vs Non-Catastrophic Failures

· Catastrophic failure

• Device ceases to operate entirely

Non catastrophic failures

• Device operates but at lower efficiency which can lead to larger losses

Bathtub Curve Showing Probability of Failures over the Lifetime of a Product

Inverter replacement rate as function of lifetime: 1st phase of bathtub curve?

In business plans, life of an inverter is typically assumed around 13 years (Baumgartner, EUPVSEC 2015)

- Assessment on 2000 commercial PV plants operating since 2010 and smaller than 100 kW (Solar Bankability)
- About 10% of inverters replaced after 6 years (majority within the first 3 years)
- First part of a bathtub curve:

Inverter replacement rate decreasing from ca. 4% in the 1st year to less than 1% in the 5th year

First Indications of Inverter Reliability in the Field

More than 30 brands and multiple models within one brand

- · Despite differences in service policy, number of replaced inverters gives a first indication of reliability in the field
- New inverter models typically suffer the most from early failures
- Inverter failure rates are rarely disclosed by manufacturers
- Higher rates found may be due to early failures which are typically not accounted for in claims made by manufacturers

When Would the Wear-out Failures Start?

When is the right time to replace an inverter?

Big Data Analytics: Value and Complexity for Different O&M Objectives

3E's PV Health Scan: Data Analytics for Fault Detection

Data mining with artificial intelligence: example for limit checking (2 MW rooftop in Belgium)

- Fault detection: what's wrong?
- Applicable to all inverter inputs or strings if monitored: where is it wrong?
- Automatic diagnosis through machine learning: why is it wrong?

3E's PV Health Scan: Data Analytics for Fault Detection

Data mining with artificial intelligence: example for limit checking

- · Figure of current-related array losses: deseasonalized trend
- · Both arrays/inverters degrade systematically
- Long-term degradation rates: ~2.4% per year
- · Probable root cause:
 - · Hot spots from shadow or soiling
 - Degradation of PV laminates

Time for a site visit, thermography and possibly a warranty claim.

From Fault Detection to Automated Diagnosis

Example: 3E's automated Solar Sensor Check

This sensor:

- a) needs cleaning
- needs calibration
- c) is ready for the trash
- d) no idea

Classical Al

- Knowledge-based, phenomenological
- Inference-based
- Possibly fuzzy or Bayes logics

Unsupervised Learning

- Clustering methods
- Descriptive, not explanatory

Supervised Learning

- Classification methods
- Training data set required (Ground Truth)

Operation Risk Mitigation: Commercial Rooftops and Utility Scale Plants

Advanced Monitoring: Can these people see what's wrong with the inverter?

Easy processes for larger plants and portfolios

- Hardware independent and versatile
- Monitoring, alerting, analysis, reporting and document management, ideally linked with ticketing
- Actionable insights through data analytics

· Higher energy yield through early fault detection

- Portfolios with 10 000s of devices generating GB of data each day
- Operators lack time and tools for detailed analysis of several GB of new data each day
- Hidden or creeping faults can take months to years to be detected and finally solved

Conclusions

- LCOE is more than CAPEX
 - quality in operation matters
- Life expectancy of inverters:
 - burn can be covered by 5 year warranty
 - end of life has never been systematically documented
 - an opportunity for manufacturers to make a difference
- Data analytics for increasing O&M efficiency just started to be explored for PV
 - fault detection
 - fault diagnosis
 - maintenance optimization

This work has received funding from the European Union under the Horizon 2020 programme, contract 662189 – MANTIS – ECSEL-2014-1.

Het Mantis project werd ook gesubsidieerd door het Brussels Hoofdstedelijk Gewest – Innoviris.

