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Outline

How does storage affect the environmental balance of PV?

Life Cycle Assessment
Greenhouse gas emissions
Toxicity
Depletion



Mismatch of generation & consumption

of electricity
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Why storage @ home?

High grid electricity price?

Storage to @ Storage to

increase self- increase self-
consumption I suff|c|ency
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Storage System

Module with battery cells ............... this presentation
Energy management system

Inverter

Etcetera



Which battery type?
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Battery technology comparison

TECHNOLOGY COMPARISON

AHI™  Li-ion  PbA Li-ion = dominating
................................................................................................. battery type for PV
.................................. ©® ® &  home applications
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Calculation of carbon footprint

of stored electricity in life time of battery

Global Warming Potential (GWP) of stored electricity
g CO,-eq/kWh

GWP (g CO,-eq) / kg battery ......cccccervviunrnneennn. step 1

X Battery weight (kg)
/ usable capacity of battery (kWh) .................... step 2

/ number of charge cycles ......cooovvvviiiiniiiiinnnnnee, step 3




Global Warming Potential (GWP) of battery

with LMO: Lithium Manganese Oxide (LiMn,O,)

GWP = 5.89 kg CO,-eq/kg battery cell
using IPCC2007 GWP100a

Battery, Lilo, rechargeable, prismatic, at plant/GLO U IPCC2013 GWP100a
kg CO2-eq/kg

Total: 5.891| 100.00%
Direct emissions 0.00E+00 0.00%
Transport, transoceanic freight ship/OCEU 8.40E-02 1.43%
Transport, larry »16t, fleet average/RER U 1.37E-01 2.32%
Metal working factory/RER/I U 4.73E-02 0.80%
Electricity, low voltage, production UCTE, at grid/UCTE U 6.44E-02 1.09%
Single cell, lithium-ion battery, lithium manganese oxide/graphite, at plant/CN U 4.31E+00( 73.15%
Printed wiring board, surface mounted, unspec., solder mix, at plant/GLO U 8.57E-01| 14.54%
Cable, three-conductor cable, at plant/GLO U 6.24E-02 1.06%
Cable, data cable in infrastructure, at plant/GLO U 6.43E-02 1.09%
Reinforcing steel, at plant/RER U 2.14E-01 3.63%
Sheet rolling, steel/RER U 5.25E-02 0.89%

ecoinvent 2.2, calculated with IPCC2013 GWP100a method 9




Global Warming Potential (GWP) of battery

with LMO: Lithium Manganese Oxide (LiMn204)

GWP = 5.39 kg CO,-eq/kg battery
using IPCC2007 GWP100a

Single cell, lithium-ion battery, lithium manganese oxide/graphite,
atplant/CN U
1.050[ 100.0% 5.390|] 100.0%
Transport, freight, rail/RER U tkm 0.167 6.63E-03 0.1%
Transport, lorry >16t, fleet average/RER U tkm 0.028 \ 3.73E-03 0.1%
Chemical plant, organics/RER/I U p 0.000 [ 4.976-02]  0.9%
Electricity, medium voltage, at grid/CN U kwh 0.106 [ 1.286-01]  2.4%
Heat, natural gas, at industrial furnace >100kW/RER U MJ 0.065 4.73E-03 0.1%
Inert atmosphere: Nitrogen, liquid, at plant/RER U kg 0.010 \ 4.37E-03 0.1%
Electrolyte salt: LiPF6 Lithium hexafluorophosphate, at plant/CN U kg 0.019 1.8% 4.75E-01 8.8%
Electrolyte solvent: |Ethylene carbonate Ethylene carbonate, at plant/CN U kg lll 0.160 15.2% 2.35E-01 4.4%
Separator: Coated polyethylene film [Separator, lithium-ion battery, at plant/CN U kg | 0.054 5.1% 3.23E-01 6.0%
Cathode: LiMn204 Cathode, lithium-ion battery, lithium manganese oxide, at plant/CNkg 0.327 31.1% 2.68E+00 49.7%
Anode: Graphite Anode, lithium-ion battery, graphite, at plant/CN U kg 0.401 38.2% 1.04E+00 19.3%
Electrode tab: Al Aluminium, production mix, wrought alloy, at plant/RER U kg 0.016 1.6% 1.80E-01 3.3%
Package: Polyethylene Polyethylene, LDPE, granulate, at plant/RER U kg . o073 7.0%| [ 1.60E-01]  3.0%
Processing:
Processing of input materials: Extrusion, plastic film/RER U kg 0.073 “ 3.87E-02 0.7%
Sheet rolling, aluminium/RER U kg 0.016 | 1.00E-02 0.2%
Emissions to air:
Heat, waste Ml 0.380
Waste to treatment:
Ecoinvent assumption 5% Disposal, Li-ions batteries, mixed technology/GLO U kg 0.053 | 4.91E-02 0.9%

ecoinvent 2.2, calculated with IPCC2013 GWP100a method 10
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Lithium Iron Phosphate (LiFePO,)

th LFP:

Wi

GWP to produce 1 kg Lithium lon Battery, Manufacturing outlet

| Method used: IPCC 2007 GWP 100a V1.02

GWP = 11.2 kg CO,-eq/kg
using IPCC2007 GWP100a
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Number of cycles depend on depth of discharge

Energy storage module
Cycle life at + 25°C/+ 77°F

10 00D 0DO

Power applications
70% capacity at EOL
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Number of cycles
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Cycle life depends on both depth of discharge (DOD) and charging rates. The above results are
based on testing at a fixed DOD and varying charging rates. The end of life (EOL) is reached when
the remaining capacity is 70% of the initial capacity.
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Carbon footprint of stored electricity

Lowest value from my preliminary analysis:
12 g CO,-eq/kWHh stored electricity

How much kWh storage needed / kWh generated?

13



Carbon footprint - gram CO,-eq/kWh

® Status of inventory data 2011
hydropower / UCTE

on-roof installation in Southern Europe
1700 kWh/m2.yr irradiation on optimally-inclined modules

China electricity mix

on-roof installation in Southern Europe
1700 kWh/m2.yr irradiation on optimally-inclined modules
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World average carbon footprint =55 g CO,-eq/kWh
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Many uncertainties

GWP value based on 2010 or older inventory data of
the battery

Reliable manufacturer data missing

Number of charging cycles depend on depth of
discharge

Only battery calculated, not a complete storage
system

How much storage is needed / kWh electricity
generated from PV?
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Toxicity

N-methyl-2-pyrrolidone (NMP) solvent in electrolyte

Alternative: Water based is not possible because some
electrodes are moisture sensitive

Alternative: Electrovaya SuperPolymer® 2.0

Polyvinylidene fluoride-based binders in electrolyte
Replace with chlorine

16



Supply risk

Critical Raw Materials: cobalt

Lithium

N

Cobalt in LiCoO, cathode
A
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Economic importance
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Depletion of materials

Cobalt in LiCoO, electrode

replace Co with Mn, Fe, Ti
LiFePO,
Lithium Titanate (Li,TisO,,)
Lithium
replacement with Na, Ka, Mg, Ca...
recycling

18



Cradle to cradle battery 3

cradlefocradle

BRONZE

Aquion Energy

’
STAINLESS STEEL @ Stainless Steel Current Collector
R

BASE OXIDE " Manganese Oxide Cathode

COTTON \?‘() Synthetic Cotton Separator

CARBON Carbon Titanium Phosphate
Composite Anode

SALTWATER 273/  Alkali-ion Saltwater Electrolyte

NaSO, solution
(AHI™)
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Recommendations

To get a reliable evaluation of the environmental impact
of current storage systems it is recommended that
LCA studies are performed

with data collected by manufacturers of Battery
Storage Systemes,

in EU / National projects.
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