

REPOWERING EUROPE

Photovoltaics: centre-stage in the power system

Challenges and opportunities in the integration of PV in the electricity distribution networks

Nikos Hatziargyriou,
HEDNO, BoD Chairman & CEO
Chair of ETP SmartGrids

European Targets for 2030 (agreed 10/2014)

Evolution of EUROPEAN solar PV CUMULATIVE installed capacity 2000-2014

EUROPEAN cumulative solar PV market scenarios

95% of PV capacity is installed at LV (60%) and MV (35%)

Source: EPIA, 2012

hotoVoltaic

EUROPEAN TECHNOLOGY & INNOVATION PLATFORM

Use of Network is decreased, but not the need for investments

Power flows between transmission and distribution network in Italy, 2010-2012

Source: Enel Distribuzione

Impact of VRES on distribution networks (1/2)

Impact of VRES on distribution networks (2/2)

Technical Challenges

- Congestion Thermal ratings (transformers, feeders etc) especially on:
 - ✓ Low load max generation situations unavailability of network elements (N-1 criterion)
- Voltage regulation
 - ✓ Overvoltage (e.g. minL maxG situation or/combined with high penetration in LV network) Undervoltage (e.g. large DER after OLTC/VR) increased switching operation of OLTC/VR
- > Short circuit
 - ✓ DER contribution to fault level compliance with design fault level etc.
- Reverse power flows impact on:
 - ✓ Capability of transformers, automatic voltage control systems (e.g. OLTC), voltage regulation, voltage rise etc
- Power quality
 - ✓ Rapid voltage change, flicker, DC current injection , harmonics, etc.
- ➤ Islanding Protection
- Personnel/consumers/facilities safety, mis-coordination among protection equipment and reduced sensitivity operation zone

Requirements for DER capabilities in Network Codes

- Expanded operation limits for voltage and frequency in normal operation
- Continuous operation under low voltage (LVRT or FRT)
- Voltage support during faults (injection of reactive current)
- Frequency support:
 - o Static (droop type, $\Delta P = k \cdot \Delta f$ mainly for overfrequency)
 - Dynamic (inertial support, ΔP=k·ROCOF)
- Contribution to Voltage Regulation:
 - Reactive power control /power factor (cosφ=f(U) ή cosφ=f(P))
 - Active voltage regulation
- Monitoring και power control of DER stations:
 - Active power curtailment
 - Limits of rate of change of power production
 - Provision of spinning reserve

Distribution Services

Requirements for DER Stations in Network Codes

- Control of DER
 - > Reactive power control (P-Q, V-Q etc), active power curtailment

- Future concepts
 - Centralised or decentralised storage for peak saving
 - Coordinated (centralised or decentralised) voltage control
 - Usage of SCADA software or other (smart grids, web-interfaces e.g.)

Daily PV generation and load curves

Study Case in Rhodes

Source: EC, FP7 Sustainable Project

Improvement of node voltages (daily variation) by gradual application of control means

hotoVoltaic

EUROPEAN TECHNOLOGY

Coordinated Voltage Control

Improvement in voltage variations

Improvement of node voltages (daily variation) by applying advanced controller (Objective: minimize voltage deviations - All available control variables exploited)

Standard practice (typical voltage

Advanced controller:

$$J = \sum_{t=1}^{24} \left(w_1 * \sum_{i=1}^{N} \left(V_{it} - V_{ref} \right)^2 \right)$$

The ETP SmartGrids Vision

Can we afford silo & non smart?

Paradigm shift: from redundancy in assets to intelligence

Storage Flexible DG
Smart Distribution
Microgrids

Value of flexible technologies > €30bn/y

Challenges for 2020

- Paradigm shift towards smart grid
 - From redundancy in assets to smart integration of all available resources – fundamental review of standards
- From Silo to Whole-Systems approach
 - Enable interaction across sectors and energy vectors
- From Centralised to Distributed Control
 - Consumer choices driven development

